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Abstract 

Climate policy modelling is a key tool for assessing mitigation strategies in complex systems 

and uncertainty is inherent and unavoidable. We present a general methodology for 

extensive uncertainty analysis in climate policy modelling. We show how emulators can 

identify key uncertainties in modelling frameworks and enable policy analysis previously 

restricted by computational cost. We apply this methodology to FTT:Power to explore 

uncertainties in the electricity system transition both globally and in India and to assess how 

robust mitigation strategies are to a vast range of policy and techno-economic scenarios. We 

find that uncertainties in transition outcomes are significantly larger than previously shown, 

but strong policy can narrow these ranges. Globally, plant construction and grid connection 

lead times dominate transition uncertainty, outweighing regional price policies, including 

policy reversals in the US. Solar PV proves most resilient due to low costs, though still 

sensitive to financing and infrastructure limits. Wind and other renewables are more 

vulnerable. In India, we find that policy packages including even partial phaseout instruments 

have greater robustness to key uncertainties although longer lead times still hinder policy 

goals. Our results highlight that reducing lead times and phasing out fossil fuels are critical 

for faster, more robust power sector transitions. 

 

1. Introduction 

The purpose of policy design is to develop lasting solutions for shared problems (Giliberto 

Capano and Woo 2018). Making such policies in a complicated and unpredictable 

environment is challenging, and different forms of decision support are used to assess 

available options. Analysts often use computational models of the system of interest which 

show how policy options function within the model and provide insight into their likely effects 

in reality (Kwakkel et al. 2010; Walker et al. 2003). However, as the relationship between 

models and reality is not fully known, uncertainty is inevitable, limiting the ability to predict 

policy performance. Some policies may work well in default model settings but lose their 

effectiveness under other plausible conditions. In complex policy environments, such as 

climate or energy policy, uncertainty is pervasive and there is need for more in-depth 

analysis that goes beyond assessing effectiveness under a narrow set of circumstances.  

Designing policy that remains effective under uncertainty—so-called robust policy—has 

emerged as a key goal in policy studies (Dewulf and Biesbroek 2018). (Giliberto Capano and 

Woo 2018) define policy robustness as a property of policies that allows them to ‘respond to, 

and retain functionality amid, uncertainty’. Howlett et al. (2018) expand on their definition by 

adding that robustness allows policies to ‘continue to deliver, over time, their intended 

functions, purposes and objectives’ across probable or possible contexts. Robustness differs 

from resilience which emphasises ‘returning to a stable equilibrium point after a shock’ 

(Capano & Woo 2018; 2017) rather than the ability to attain goals under shocks and 



 

 
 

uncertainty. A distinction is also made between robustness of policy ‘output’ and ‘process’. 

Output refers to the policies themselves and policy process refers to the wider policy 

formulation and implementation cycle such as institutional decision-making frameworks. For 

example, decision-making under deep uncertainty (DMDU) provides systematic frameworks 

which seek to guide policymaking across both dimensions (Marchau et al. 2019). Policy 

processes often include structural and institutional features that, whilst crucial, are typically 

beyond the remit of policy analysts (Kwakkel et al. 2010). This paper focuses on the ‘output’ 

aspect of policy robustness from a modelling perspective.  

Robustness has long been recognized as a vital attribute in policy design across multiple 

fields (Dadson et al. 2017; Van der Steen and van Twist 2018) and studies have examined 

the qualitative characteristics of robust policies (Wilson and Kirman 2016; Kwakkel et al. 

2016). However, these are rarely complemented by computational modelling tools. 

Uncertainty analysis often features in climate policy modelling but the application of such 

analysis for designing robust policies is rare. Several authors have called for better treatment 

of uncertainty in the field (Workman et al. 2021; Hepburn et al. 2025; Panos et al. 2023) as 

uncertainty analysis to date has consisted of a few well-established methodologies (Pastor 

et al. 2020). However, few studies attempt to use it to identify which policies are robust to 

uncertainty (Rezai and van der Ploeg 2017; Cai and Sanstad 2016). Several qualitative 

frameworks have been developed that categorise uncertainty (Kwakkel et al. 2010; Stirling 

2010). From a modelling perspective, these uncertainties have been broadly categorised into 

‘parametric’ and ‘structural’ uncertainty (Pastor et al. 2020). Existing methods typically 

capture these uncertainties to estimate ranges of outcomes under broad assumptions about 

policy ambition (Iyer et al. 2015). 

Parametric uncertainty concerns the values of a model’s parameters and how closely they 

reflect aspects of reality. This can be analysed readily and receives most attention, primarily 

through scenario or sensitivity analysis (Pastor et al. 2020). Scenario analysis simulates 

different futures based on alternative assumptions (Brugnach et al. 2008), but it often 

requires assigning specific values to parameters and perhaps their standard deviation, which 

themselves may be uncertain. Sensitivity analysis (SA) supplements scenario methods by 

estimating the influence of parameter uncertainty on model outputs, identifying which inputs 

drive the most variation and defining uncertainty bounds (IEA 2024). However, it remains 

subject to the computational cost of the model in question, which limits the application of the 

method. Structural uncertainty refers to the discrepancy between a model and the system or 

process it is used to investigate. Inter-model comparisons and ensembles are common 

techniques for analysing structural uncertainty but remain relatively rare (Simmonds et al. 

2022; Pastor et al. 2020; Jaxa-Rozen and Trutnevyte 2021).  

Scenario and sensitivity analysis are common in climate policy modelling at the global and 

regional level. For example, the International Energy Agency (IEA) models several global 

scenarios of ambition in decarbonisation of the energy sector. In their modelling they find 

that rapid renewables deployment could put pressure on supporting activity such as 

permitting or supply chain resilience as well as inducing further cost declines as has already 

been seen in key technologies (Luderer et al. 2022). They project that emissions will fall 

nearly 30% by 2035 and approximately 50% by 2050 in their 2024 analysis on stated 

policies (STEPS, IEA 2024). They find uncertainty in electricity demand is driven by 

transitions in other industries, unpredictable weather patterns, and the rapid growth of new 

sectors such as AI data centres. In the accompanying SA, they explore the impact of 

variation in certain key factors, such as EV sales, on electricity demand, fuel use and 

subsequent CO2 emissions. This analysis suggests 2030 emissions could be 1.6% higher or 



 

 
 

lower than projected due to key uncertainties. More ambitious scenarios are also projected 

with varying assumptions about renewables deployment, coal phaseouts, energy storage 

support and demand flexibility.  

These types of analyses are also applied to regional transitions also. India is the third 

largest absolute energy consumer and faces rapidly rising energy demand with 

electrification in multiple sectors, a growing population, and limited domestic gas reserves 

(Vijayalaxmi and Manthanwar 2024; Bhatia 2023). Policy instruments have included feed-in 

tariffs, renewable purchase obligations, tradable renewable energy certificates or 

transmission cost waivers (Sawhney 2021; Vijayalaxmi and Manthanwar 2024). Scenario 

projections show solar will continue to expand rapidly and may come to dominate the 

system (Singh and Idrisi 2020). The Central Electricity Authority (CEA) in India projects 

between 53-55% renewables energy share (of capacity) by 2030 depending on demand 

levels, hydropower availability and the cost of batteries (CEA 2023). Previous studies 

examined key uncertainties affecting renewables uptake such as electricity demand and 

technology costs (Chaturvedi et al. 2021; Dasgupta and Sarangi 2021). Many studies 

highlight the need for supporting infrastructure such as transmission upgrades and storage 

(Singh and Idrisi 2020) and reducing the costs of finance (Shrimali et al. 2013). Critics have 

argued that modelling performed for India provide widely varying projections, without being 

explicit about assumptions (Bhatia 2023).  

The field of Uncertainty Quantification (UQ) is one avenue for addressing the need for 

understanding model uncertainties and limitations. UQ replaces complex models with 

‘emulators’ that approximate the true model (O’Hagan 2006), whilst being much more 

computationally efficient, enabling flexible and robust uncertainty analysis otherwise limited 

by computational cost (Lee et al. 2011). UQ has been framed as the connection from the 

mathematical and statistical analysis of complex models to the real world, using a suite of 

methodologies across fields (Swallow et al. 2022). Emulators are currently not widely used in 

climate or energy policy modelling. For example, the modelling framework used in this paper, 

FTT, has adopted uncertainty analysis based around model runs, whether by varying the 

inputs systematically (SA, Lam et al. 2018) or randomly (Monte Carlo, Nijsse et al. 2023). 

For policymakers to construct climate policy robust to uncertainties concerning assumptions 

and model parameters, a first step is developing tools that emphasise this conditional 

uncertainty within modelling frameworks (Stirling 2010).   

This study develops a general methodology, based on uncertainty quantification (UQ), to 

identify key uncertainties in climate policy and to assess the robustness of policy outcomes. 

We provide a thorough analysis of model uncertainties at the global and regional level and 

use this to explore what policy packages show more robustness to key uncertainties for 

achieving certain policy goals. In section 2, we describe our method and its application to the 

power system transition model, FTT:Power. We use this framework to analyse key 

uncertainties in the global electricity system transition and analyse policy robustness for 

India, with results presented in section 3. In section 4 we discuss our findings in relation to 

similar research, highlight our contribution and conclude. 

 

2. Methodology 

We explore uncertainties affecting the power system transition globally and regionally, and 

investigate how different policy packages in India perform across a broad range of 

scenarios. By constructing emulators for different outputs of the model, we explore future 



 

 
 

scenarios, their uncertainty and the performance of policy packages under thousands of 

plausible techno-economic and political contexts by varying the values of the relevant 

unknown or uncertain parameters. This allows us to assess policy robustness to these 

uncertainties, without requiring infeasible amounts of simulations of the model itself. Our 

study applies this general methodology to FTT:Power, but it could be applied to a broader set 

of models and questions.  

2.1 FTT:Power  

The model family known as Future Technological Transformations (FTT) uses dynamic 

simulation modelling to understand how technology mixes in various sectors are set to 

develop in the coming decades (Mercure 2012). FTT:Power is a 71-region model of power 

sector investors and dispatchers and features 22 electricity generation and storage 

technologies. Residual load-duration curves are used to model load bands and storage 

needs; dispatchers decide on which generation asset to use by comparing marginal costs. 

The model is based on evolutionary dynamics simulating the uptake of technologies in S-

curve processes characteristic of innovation. The central aspect is a set of replicator 

dynamics equations (Lotka-Volterra equations) which model the diffusion of technologies 

based on comparisons of levelized costs in chains of binary discrete choice models. The 

model incorporates a wide array of policy instruments, including regulations, taxes and 

subsidies. Innovation is incorporated by adding technology-specific cost reductions 

proportionate to cumulative global capacity. A term is added to costs to capture non-financial 

factors through calibration to historical shares data. This implicitly accounts for non-captured 

policies.  

2.2 Emulation 

The analysis uses emulators that are trained on input and output data from FTT:Power 

model runs at varied inputs. Whilst it is possible to emulate the entirety of FTT:Power, this 

would be computationally intensive due to the large numbers of potential model inputs and 

outputs. We focus on inputs and outputs relevant to the current study, but these could easily 

be substituted for alternatives within the emulation framework for studying different 

questions. Focusing on specific parts of models is common for all such methods. 

2.2.1 Simulator configuration 

We conduct a series of model simulations, systematically varying key policy and techno-

economic parameters known to significantly influence four energy transition outputs: 

1. Electricity generation capacity (onshore wind, solar PV) 

2. Power sector emissions 

3. Shares of renewables in the electricity mix (by capacity) 

4. Weighted costs of electricity generation 

Techno-economic inputs determine key aspects of the energy system and the context within 

which policies function. Table 1 shows some of those varied here, their assumed ranges and 

whether these vary generally, regionally or by technology.  The specification of all 15 techno-

economic inputs can be found in the Supplementary Information (SI). We use simplifying 

parameters that apply to multiple FTT:Power inputs. These can apply uniformly across all 

regions, like learning rates for technologies, or modify sets of pre-existing values. For 

example, discount rates have a baseline value for each region-technology combination, and 

our single discount rate parameter acts on all these, assuming they vary in a correlated 

fashion. This is a simplifying assumption we choose here for flexibility and tractability. 



 

 
 

Input Technologies / 
Regions 

Ranges Description/Sources 

Learning Exponent Solar PV (-0.473) – ( -0.165) 
Mean -0.319 

Key parameter for the 
learning rate (% price 
decline per doubling of 
capacity) 
(Way et al. 2022) 

Onshore wind 
Offshore wind 

(-0.3) – (-0.088) 

Lifetimes Solar PV  
25–35 (years) 

(Way et al. 2022; Krey et 
al. 2019) 
 Onshore wind 

Offshore wind 

Lead times  Solar PV 0.5–1.5 (years) Lead times split into 
technology specific and 
system-wide timescales. 
Ranges devised from 
Gumber et al. (2024) 
 

Onshore wind 1–2 (years) 

Offshore wind 2–4 (years) 

Grid connection / 
commissioning 

0-1 (years) 

Discount Rate Region x Technology +/- 3% (2% minimum) IRENA, BNEF 

Electricity Demand Regional +/- 20% to growth rate 
of projected demand 

E3ME results based on 
IEA projections 

Fuel Prices Coal 
Gas (CCGT) 

+/- 2 standard deviations 
from regional mean  

Average over last 5 years 
(IEA) 

Table 1. Techno-economic input details. Each input is listed with the technology/region it applies to 

within FTT:Power. Ranges provided as well as their sources.  

The learning exponent determines the rate at which costs decline with deployment. Learning 

rates for similar technologies, e.g. onshore and offshore wind, are varied together. Bringing a 

generation plant online involves multiple stages (Gumber et al. 2024). We define lead times 

as the period from construction start to electricity generation. This combines technology- and 

system-level timescales, including grid connection delays. The discount rate is the rate at 

which investors discount future costs and revenues, reflecting the opportunity cost of capital 

and investor preferences for risk (Nasr et al. 2025). It relates to interest rates: cheaper 

finance means lower discount rates, making long-term and riskier projects more viable. 

There are many ways policies could be parametrised in the model, with values specified by 

year, country, instrument, and industry. To simplify and avoid the simulation of unrealistic 

scenarios, we group by region and sets of policies determined likely to be correlated, such 

as upfront subsidies and feed-in tariffs. For each region-instrument combination, we define a 

single policy parameter that varies on [0,1] and maps onto these groupings. Through 

combining these policy ambition levels in different ways, certain types of instruments can be 

switched off entirely or simulated at any rate up to their regional maximum, allowing flexibility 

in the composition of policy packages simulated. 

Table 2 details the three groupings of policy instruments, applied to technologies according 

to what is most common, depending on aspects such as the maturity of the technology. 

Phase-outs are applied to fossil fuel-based technologies such as coal, gas and oil. Subsidies 

are applied to nuclear, biomass, pumped hydro, geothermal and carbon capture and storage 

(CCS) technologies, and are correlated with feed-in tariffs applied to solar PV, onshore and 

offshore wind. Feed-in tariffs are differentiated based on the relative costs of these 

technologies, with wind technologies receiving a larger tariff. Carbon pricing is applied to all 

emitting technologies.  

For regional groupings, China, the United States (US) and India are treated individually while 

the rest of the world is categorised into Global South or Global North based on World Bank 

classifications, giving 15 policy parameters (5 regions, 3 policy groupings) controlling levels 

of policy ambition. For example, the phase-out parameter for China can vary from no phase-

out (0) to total phase-out (1), with mid-level phase-out (0.5) resulting in half the capacity 



 

 
 

additions that would occur under no phase-out. One exception is the feed-in tariff for the US 

which can also capture rollbacks of policy supporting renewables. For the US, parameter 

values between 0.5-1 represent the instrument levels in Table 2, values between 0.5-0 

represent baseline policy for all instruments except feed-in tariffs which become negative. 

This is designed to capture removal of tax credits under the Inflation Reduction Act (IRA). 

Whilst the policy instrument is not identical, it has a similar effect in making renewables less 

attractive.  

Overall, our analysis features 30 variable parameters, split between 15 techno-economic 

and 15 policy inputs. To produce training data for emulation, 500 runs of FTT:Power are 

performed at input sets generated by Latin Hypercube Sampling, ensuring comprehensive 

exploration of the 30-dimensional parameter space (Urban and Fricker 2010). Additional 

runs can be performed if regions of parameter space are predicted poorly, with validation 

checks to assess this. Once trained and validated, predictions from the emulator can be 

made at any combination of inputs.  

Instrument Baseline policy Mid-level policy High-level policy 

Parameter value  
(excl. US) 

0 0.5 1 

Phase-outs 
(sales restricted) 
Oil, CCGT, Coal 

 
 

0%  

 
 

50%  

 
 

100%  

Feed-in tariffs 
Onshore/Offshore 

Solar PV 
 

Subsidies 
 (upfront cost 

reduction) 
Nuclear 

CCS (coal, gas, 
waste) 

Biomass (+ CCS) 
Geothermal 

Pumped Hydro 

 
$0/MWh 
$0/MWh 

 
 
 

0% 
0% 
0% 
0% 
0% 

 
$20/MWh 
$15/MWh 

 
 
 

10% 
25% 
30% 
25% 
25% 

 
$40/MWh 
$30/MWh 

 
 
 

20% 
50% 
60% 
50% 
50% 

Carbon Pricing 
Oil, CCGT, Coal 

Current regional levels  $31/tonCO2 (2022) – 
$345/tonCO2 (2050) 

$62/tonCO2 (2022) – 
$564/tonCO2 (2050) 

Table 2. Policy instrument levels. Each row signifies what instruments are assumed to be 

correlated and are varied with the same parameter. Three levels are shown, but parameter values can 

vary between 0 and 1.  

The more ambitious policy levels are additional to the baseline which implicitly captures 

current policy for feed-in tariffs, subsidies and phase-outs. The carbon price is the actual 

level of the policy, if regions have previously existing carbon pricing, such as in the EU, this 

is replaced with the new level rather than added to it.  

 

 

2.2.2 Emulator Fitting 

Given the model runs generated by the space-filling design above, we train a Gaussian 

Process (GP) emulator for each output of interest. A GP is a flexible statistical model that 

can be used to approximate the true, expensive model, producing efficient predictions of the 

output at any set of inputs. Importantly, a GP provides uncertainty on these predictions, with 

interpolation at known points and uncertainty increasing as prediction points move further 

away (in input space) from observed simulations.  



 

 
 

Denoting by 𝑓(𝑥) a particular output given when FTT:Power is simulated at vector of inputs 𝑥 

in parameter space, the GP emulator has the general form: 

𝑓(𝑥) ~ GP(𝑚(𝑥), 𝐶(𝑥, 𝑥 ′))  

with mean function, 𝑚(𝑥), and covariance function, 𝐶(𝑥, 𝑥 ′). The mean function can be used 

to capture the main trend of the relationship between the inputs and output, for example 

through a regression on the inputs. The covariance function models correlations in the 

residuals, with parameters controlling the correlation in each input and the overall variance 

(Oakley and O’Hagan 2002). Given parameter estimates and data, the predictive mean and 

variance of 𝑓(𝑥) at any unseen inputs x can be written down using properties of the 

multivariate Normal distribution, and hence predictions are fast. 

Emulators were trained for capacity of onshore wind and solar PV, and power sector 

emissions, at the global level for 2030, 2040 and 2050. For India, emulators were built for 

these outputs as well as the weighted average cost of electricity generation and shares of 

the energy mix made up by renewables, for the same years. For each, we use 80% of the 

500 simulations for training and 20% for testing. Performance is validated using the test data 

and leave-one-out prediction (Dunne et al. 2022) (see SI). The emulation framework can be 

extended to higher dimensional output, for example the full time series of the above outputs, 

by combining GPs with dimension reduction techniques (Higdon et al. 2008; Salter et al. 

2019). 

2.3 Sensitivity analysis 

Using the above emulators, we perform ‘one-at-a-time’ (OAAT) sensitivity analysis (SA) to 

evaluate the inputs that are the main drivers of variability in the model outputs (McNeall et al. 

2024). Each input in turn is varied across its entire range whilst the remaining parameters 

are kept constant. For the non-varied parameters, policy inputs are held at baseline levels 

(0, representing current policy), and techno-economic parameters at their mean. The relative 

sensitivity across all outputs is calculated and inputs ranked according to how much variation 

they drive. The results identify the most important drivers of variability and guide the rest of 

the analyses. 

2.4 Uncertainty Analysis  

We can assess a range of policy scenarios rapidly by evaluating the emulators at different 

sets of inputs. By fixing certain inputs at chosen values, within subranges, or according to 

some probability distribution, we can sample from the input uncertainty under different 

scenarios and use the emulators to propagate this uncertainty through the model to give a 

probabilistic assessment of the output. By placing different assumptions on inputs, the 

emulators allow for the efficient and rigorous comparison and assessment of the robustness 

of policy scenarios under uncertainty.  

The following describes the specific scenario comparisons. For each scenario, 20,000 

samples are drawn from the distributions over the unfixed inputs, with the emulator mean 

and variance evaluated for the relevant outputs and sampled from to account for emulator 

uncertainty. Policy parameters are set at certain levels for each of the analyses. For these 

policy scenarios, the most important techno-economic parameters, for each analysis, are 

sampled uniformly from specific subranges whilst the remaining inputs are varied normally, 

therefore we can explore uncertainty across and within scenarios. Lead times are varied by 

dividing the full range into sub-ranges and then varying uniformly within each, with either 3 

(fast, medium, slow) or 2 (fast, low) sub-ranges that partition the original range.  



 

 
 

We investigate the global power sector emissions in 2030 and 2050 under several scenarios 

featuring different levels of global ambition under different assumptions about lead times. 

The policy scenarios feature one at current policy levels, and two with unified global 

response at mid and high levels as detailed in Table 2. These more ambitious policy levels 

are additional to current policy for feed-in tariffs, subsidies and phase-outs and the carbon 

price is the actual level of the policy. If regions have previously existing carbon pricing, such 

as in the EU, this is replaced with the new level rather than added to it.  

For India’s power sector, we first analyse how different policies perform at achieving capacity 

levels for 2030. A series of policy packages are designed for India’s national power system 

that feature combinations of instruments at different levels. We predict capacity levels of 

onshore wind and solar PV at each combination of three levels of each instrument, shown in 

Table 2, and analyse what proportion exceed 393 GW, the combined capacity projected by 

the CEA ( 2023). 

Next, we analyse the interaction between lead times, electricity demand and phase-out 

instruments over time. We compare a mid-level phase-out to current policy. For electricity 

demand, a scenario is classed as having ‘low demand’ if the growth rate is 0-20% lower than 

the mean level or ‘high demand’ if it is 0-20% higher year-on-year.    

The final analysis examines a wider range of policies and their robustness in achieving 

multiple policy objectives under uncertainty. Objectives are represented by chosen target 

levels for outputs for 2030: 1) the CEA projection of 55% renewables share of generation, 

not including nuclear and large hydropower, 2) the weighted average cost of electricity 

generation equal to or below $68/GJ, the value under current policy derived from the 

FTT:Power baseline scenario, 3) power sector emissions below 1000 MtCO2/year, 

representing a reduction of approximately 30% from 2024 levels (Ember 2025). The policies 

include combinations of all instruments at mid-level (Table 2). We examine the robustness to 

inputs that are most important across all outputs by comparing the proportion of predictions 

that achieve the targets under each policy package subject to variation in the techno-

economic parameters.  

 

3 Results  

We present our results in two parts. Firstly, we explore the key relationships in the model at 

the global and national level through sensitivity analyses, highlighting the main inputs driving 

variation, and uncertainty, for energy transition outputs. Secondly, we explore sets of 

scenarios to compare policy impact and robustness to key uncertainties.  

3.1 Sensitivity Analyses 

At the global level, we focus on the outputs of cumulative capacity of key technologies, solar 

PV and onshore wind, and power sector emissions. The SA presented in Figure 1 shows the 

relative importance of inputs in 2030, 2040 and 2050. 

Variation in system-wide grid connection times has the most impact across outputs, 

particularly for emissions and solar PV capacity in the near term. This is also the case for 

variation in solar construction times. For onshore wind, whilst construction periods have the 

most impact on capacity it does not drive much variation in emissions except in 2030. This 

suggests that onshore additions are not primarily replacing fossil fuels except in the near 

term. Onshore is less affected by variability in grid connection times than solar as 

construction times are longer and investment costs are larger, so the impact of faster grid 



 

 
 

connection has a smaller impact on investor appraisal. In the longer term the learning rate 

for onshore wind drives most of the variation in capacity as costs decline. This highlights that 

onshore additions are often at the expense of other renewables, most likely solar. The 

learning rate of solar has a much smaller relative impact on solar capacity levels. This 

indicates that costs are already so low that further declines brought about by learning-by-

doing only have a marginal impact. Discount rates play a substantial role in the rollout of 

both technologies in 2040 and 2050, while electricity demand drives substantial variation in 

all outputs.  

Regarding policy inputs, phase-outs have a substantial impact on the level of emissions. In 

China, phase-outs have a larger impact in the near term as they determine how quickly 

China reduces its reliance on coal, while longer term, the level of phase-outs in the Global 

South drives more emissions variation as electricity demand continues to grow. Phase-outs 

in both regions also propel some variability in onshore capacity. Chinese subsidies drive 

much variation in onshore expansion particularly in the longer term. US subsidies or 

rollbacks drive variation particularly in the near term but relatively low amounts.  Solar 

capacity seems not to vary heavily in response to phase-outs, subsidies or carbon pricing 

but is affected by factors that can be influenced by other policy not modelled here. For 

example, grid expansion support or monetary policy would influence lead times and discount 

rates, which here induce much of the variation.  

 

 



 

 
 

Figure 1. OAAT sensitivity analysis for global outputs across time. Panel a) shows the relative 

sensitivity of outputs (x-axis) to policy and techno-economic inputs (y-axis), policy parameters below 

0.001 effect excluded. Panel b) shows the average sensitivities across all outputs shown ordered by 

importance. Abbreviations: China (CN), Rest of Global South (RGS), Solar PV Capacity (Solar), 

Onshore Wind Capacity (Onshore). Figure generated using code adapted from McNeall et al. (2024). 

 

 

Figure 2. OAAT sensitivity analysis for India outputs across time.  Same as Figure 1 for Indian 

outputs. Electricity price refers to weighted average generation price, Renew. Share refers to share of 

total capacity provided by renewables excluding nuclear and large hydropower.   

 

Figure 2 shows the SA for India. Grid connection and solar lead times drive most variation 

across outputs, in particular emissions, solar capacity and renewables share, although 

onshore capacity is less sensitive to grid connection times. Emissions and capacity levels for 

both technologies are also sensitive to variation in electricity demand. Demand has less 

influence on the cost of electricity generation and renewables share, implying that greater 

demand alone is met proportionately by both renewables and fossil fuel-based technologies.  

Phase-outs have a strong impact on emissions and near-term onshore capacity and a 

relatively  minor impact on solar capacity, renewables share and the price of electricity 

generation. The influence on generation costs increases over time and this is also the case 

for subsidies, but they are most highly affected by carbon taxation. Carbon taxation has a 

low effect on emissions. Whilst carbon taxes will increase the costs of coal-based 

generation, India’s main source of electricity currently, the discount rate for coal is high so 

much of this cost is discounted away over time. There is also low availability of other less 



 

 
 

intensive fossil-based technologies, such as gas, so the tax encourages mostly a shift 

towards renewables but not as effectively as subsidies which are not discounted. Subsidies 

drive substantial variation in onshore capacity but not solar.  

The results of the above SA provide insight into what inputs drive most variation, and 

therefore uncertainty, in outputs of interest. This informs which inputs feature more 

prominently in subsequent analyses. For example, as capacity levels in India are mostly 

sensitive to phase-outs and subsidies, this is what features in the below instrument 

comparison.  

3.2 Uncertainty Analyses 

3.2.1 Global Power Sector Emissions Over Time 

Figure 3 shows how the lead times and different levels of global policy ambition interact to 

influence the level of emissions in 2030 and 2050, under uncertainty in all other techno-

economic inputs. Increased policy ambition leads to lower median emissions in all scenarios 

as well as greater predictability, displayed by the range and shape of the distributions. 

Scenarios featuring slow leads have greater emissions but are more predictable in the near 

term. When leads are fast, we see much greater emissions reductions, even under current 

policy, resulting in an approximate halving of 2050 emissions levels compared to slow rollout 

scenarios. High global ambition results in even greater reductions and far more predictable 

2050 emissions levels. Comparing the impact of lead times to the impact of global policy, we 

see that fast leads under current policy have an approximately equivalent impact to mid-level 

policy under slow rollouts.  



 

 
 

 

Figure 3. Power sector emissions distributions under different policy-techno-economic 

scenarios. Distributions represent the variation due to the uncertain techno-economic inputs within 

that scenario. Dotted lines are median levels.  

 

 

Under fast lead scenarios we see skewed distributions for 2030 emissions levels with a 

portion of scenarios achieving disproportionately high emissions reductions. These 

scenarios feature the very fastest speeds where they interact with particularly favourable 

conditions such as high coal prices and low discount rates which increase investor 

preferences towards renewables.  

3.2.2 India Policy Instrument Comparison for Capacity 

Figure 4 shows the uptake of solar PV and onshore wind under different policy instrument 

combinations in India in 2030. We focus on phase-outs and subsidies only, as carbon pricing 

was shown by the SA to have little effect on capacity levels in India. We observe that fossil 

fuel phase-outs significantly drive uptake of solar PV and marginally increase onshore 

capacity. Subsidies drive greater onshore capacity but have a less pronounced effect on 

total capacity as in some scenarios, greater subsidies lead to less solar uptake. Under our 

baseline scenario, bottom left panel of Figure 4, the median combined uptake reaches 



 

 
 

approximately 390 GW, almost equal to that projected by the CEA (2023), implying a good 

alignment with government projections for capacity levels. However, we show the large 

uncertainty associated with these figures and only in 50% of our predictions is that value 

reached or exceeded in the baseline scenario.  

 

 

Figure 4: Distributions for Indian renewable energy capacities in 2030 across national policy 

packages. Panels represent different policy instrument combinations. Each distribution represents 

the capacity of onshore, solar PV and their total under variation in techno-economic inputs. The total 

has 90% ranges marked by dotted lines with black solid lines representing the median total capacity. 

Red sections represent predictions above 393 GW.  

A high phase-out achieves a 28% increase in median total capacity. Beyond median levels, 

the number of scenarios where the 393 GW level is exceeded increases substantially as the 

phase-out strength rises with high phase-outs exceeding this level in just under 95% of 

scenarios. The skew of the total capacity distributions inherits the skew of solar capacities 

which is far stronger than that for onshore wind due, primarily, to the impact of lead times. 

We can infer that scenarios featuring faster leads will result in capacity levels toward the 

upper portions of the distributions.  

When subsidies alone are added to current policy, the median combined capacity level 

increases marginally. The increase is stronger when focusing solely on uptake of onshore 

wind, but this is accompanied by a reduction in uptake of solar resulting in a less substantial 

increase in total capacity. Under our assumptions, which feature larger subsidies for onshore 



 

 
 

than solar, greater subsidies result in some additions of onshore wind replacing additions of 

solar PV as opposed to fossil fuels. When subsidies are used in conjunction with phase-outs, 

this swapping between onshore and solar is mitigated at certain subsidy levels.  

These results show not only the impact of policy but also the variability of any policy scenario 

when subjected to a comprehensive treatment of plausible variability, and therefore 

uncertainty, in the techno-economic context. This has substantial implications from a 

planning perspective and in the next subsection we perform more systematic exploration of 

these uncertainties for emissions.  

3.2.2 Phase-out Robustness for Emissions Reduction 

Figure 5 shows Indian power sector CO2 emissions as a function of phaseout levels, lead 

times,  electricity demand and year. Informed by the SA, we focus on phase-outs as the 

most important instrument for achieving emissions reduction. We compare between our 

baseline scenario and a mid-level phase-out only as partial phase-outs appear more 

politically feasible in the near term. We see that even partial phase-outs significantly reduce 

median emissions and the sensitivity of emission levels to electricity demand levels. Without 

any phase-out policy, emission levels are more influenced by demand and this sensitivity 

increases substantially over time. In 2050 under current policy, emissions levels could be 

anywhere between 0-1800 MtCO2/year . With a partial phase-out this range is restricted to 0-

1000 MtCO2/year, a reduction of 45%.  

 



 

 
 

 

Figure 5: Distributions of Indian power sector emissions under policy and electricity demand 

variation across time. Rows represent different levels of phase-outs, columns represent different 

lead times. The coloured curves represent different years; the shades represent levels of electricity 

demand. Dotted coloured lines represent the median for all demand levels for that year-leads-policy 

scenario.  

The sensitivity of emissions to demand increases over time, but less so with a partial 

phaseout.  The wider ‘tails’ seen in the distributions under no additional policy are 

substantially decreased under a partial phaseout scenario. Without additional policy, India’s 

power sector emissions could rise substantially by 2050 in scenarios with high demand and 

slow lead speeds. If construction and connection proceeds quickly then, even under current 

policies, emissions look set to decrease by 2050. However, if electricity demand is high then 

there is significantly greater uncertainty. This is shown in the significant difference between 

the spread of the distributions for 2050 in a fast lead, high electricity demand scenarios. In 

scenarios with slow leads, high electricity demand results in higher levels of emissions than 

under fast lead times. The uncertainty driven by electricity demand and its interaction with 

leads is significantly less under phase-outs, as are median emissions levels.  

 

3.2.3 Policy Robustness Over Multiple Policy Goals 



 

 
 

Our results from the two analyses above show phase-outs having substantial impact on the 

transition in India for individual policy goals. In this section we examine a broader set of 

policies and goals for India in 2030. Figure 6 displays the proportions of emulator predictions 

under techno-economic variability that achieve target levels for each policy goal, and the 

trade-offs. We observe lead times are the uncertainty that all policy packages have the least 

robustness to, as indicated by the large differences between the panels when compared 

vertically. However, some policies are robust to other uncertainties for certain targets, 

observed when comparing horizontally. 

 

  

Figure 6. Proportions of predictions meeting 2030 targets in India. Panels represent different 

combinations of ranges of techno-economic parameters. Lead times, discount rates and demand are 

varied uniformly within their subranges, identified by the panel, and all other techno-economic 

parameters are varied normally. Bars represent the proportion of predictions that achieve targets. 

Bars are separated into different policy packages: baseline, subsidies-carbon price (Sub-CP), carbon 

price-phase-outs (CP-Phase), subsidies-carbon price-phase-outs (Sub-CP-Phase), subsidies-phase-

outs (Sub-Phase). 

 

In scenarios where plant integration moves at pace, all policies analysed are robust in 

achieving goals on emissions and renewable energy share. However, the average levelized 



 

 
 

price of electricity generation is more sensitive to other uncertainties, particularly discount 

rates. The policy that is most likely to achieve the cost target are subsidies-phase-outs. With 

fast leads, current policy also achieves many of the targets under low discount rates but not 

high ones, particularly if they are accompanied by high electricity demand. This is also the 

case for other policies except subsidy-phase-outs which remain relatively robust.  

Under medium lead times, policy packages that do not include a phase-out instrument 

reached the emission target far less often. Packages including a phase-out, however, remain 

relatively robust although higher demand results in a smaller proportion achieving the 

thresholds. Phase-out-based packages show greater robustness in achieving the renewable 

energy share target and this is less affected by variability in demand. Carbon pricing-based 

packages result in higher costs of electricity generation and most predictions have 

generation costs above baseline levels. Subsidy-phase-outs result in costs staying below 

target levels in most predictions but this becomes much less likely in scenarios featuring 

high discount rates and medium or slow lead times. Under slow leads, most policies fail to 

achieve any goals in most scenarios but if discount rates are low then subsidy-phase-outs 

result in around 75% of predictions achieving the cost of generation target, greater than 

current policy. We can infer that even in unfavourable techno-economic contexts this policy 

would still result in cheaper electricity production as well as a greener power system. 

Lead times are clearly the most impactful variable, and all policies have limited robustness to 

this. Phase-out based instruments exhibit strong robustness to discount rate and electricity 

demand uncertainty for energy share and emissions goals. When coupled with a subsidy this 

makes the package more robust to all uncertainties, including lead times, in achieving the 

generation cost target. These results show that the robustness of policy would be increased 

significantly if accompanied with policies aimed at decreasing lead times. 

 

4.  Discussion & Conclusion 

Our methodology enables new treatments of uncertainty that are typically too 

computationally costly to perform using simulations alone. Using emulators we replicate 

established methods, incorporate in-depth uncertainty analysis and apply this to policy 

design. We demonstrate a general methodology for uncertainty analysis in modelling 

research and apply it to the power system transition model, FTT:Power, with a focus on 

policy robustness. In this application, we adopt flexible assumptions about policies, regions 

and general input parameterising to explore the energy transition globally and in India.  

We find that variability in plant construction and grid connection speed, or lead times, drives 

most uncertainty in the global transition, outweighing price policies by individual regions, 

predominately due to the low cost of solar PV. For selected policy goals in India, partial fossil 

fuel phaseouts coupled with subsidy support for renewables showed robustness against a 

wide range of uncertainties. Generally, we infer that policy packages that focus on 

decreasing lead times, alongside regulation constraining fossil fuel expansion results in 

quicker, more predictable and more robust transitions in the power sector. However, this 

predominately favours solar PV expansion and further support for other renewables is 

necessary.   

We show that future global capacity levels of key technologies and power sector emissions 

are highly sensitive to lead times. Within FTT:Power, longer lead times delay revenue 

creation, which limits the speed of reinvestment into the next generation of power plants. In 

other words, the longer lead time impacts the maximum growth rate. Technologies with fast 



 

 
 

lead times can most rapidly fill in market gaps compared to technologies with longer lead 

times (Mercure 2015). Given the strong path dependency in the model, with growth 

proportional to existing shares, this has long-term impacts (Mercure et al. 2014). In earlier 

stages of the transition, lead times for renewables were relatively low. These have been 

increasing over time for most renewables, but solar PV remains the quickest to commission 

(Gumber et al. 2024). Coupled with our findings, this suggests that lead times are a new key 

and growing driver of uncertainty in the global transition.  

Regional energy policies, both supportive and adversarial, now drive relatively less 

uncertainty at the global level for the expansion of solar PV. This supports previous work 

highlighting the momentum of solar expansion (Nijsse et al. 2023) and this limits the impact 

of regional rollbacks, for example, the US’s removal of aspects of the Inflation Reduction Act.  

We show that this has a limited impact on the global transition and that solar PV is 

particularly resilient due to recent cost declines and strong historical support. Onshore wind 

is still impacted by market-leading regions like China, but the US impact is minor and only in 

the near term. However, this does not include all policy levers and does not capture how the 

US might exert political pressure on other countries (MacNeil and Paterson 2020), or the 

US’s role in international financial institutions (Merling and Forster 2024; Helleiner 2025). 

Further research is needed into policy affecting enabling factors to give insight into how 

regional policy exerts influence and drives uncertainty.  

By 2030, we see lower median emissions under current policy than IEA projections (2024), 

though their projections fall within our uncertainty range. We include a broader set of 

uncertainties, showing that both shorter lead times and fossil fuel phase-outs are critical. Our 

results reveal much higher sensitivity than the IEA’s analysis, underscoring our contribution. 

Our findings suggest policies focusing on decreasing lead times and enabling financing are 

critical. Fast lead times is dependent on factors such as permitting regulations, resilient 

supply chains, grid expansion and other accompanying infrastructure such as storage 

capacity (IEA 2024). Our contribution highlights the scale of the potential acceleration if 

progress is made in these areas.  

To reduce the costs of capital, financial derisking tools such as contracts-for-difference and 

green finance remain important to accelerating renewables (Beiter et al. 2024; Christophers 

2024) especially for wind, given its higher upfront costs and longer lead times. Whilst we find 

solar PV is increasingly resilient to financing constraints, it still currently depends on investor 

confidence and predictable revenues.  The influence of investor preferences has also 

prompted calls for greater public ownership of energy systems (Christophers 2024), 

underscoring the importance of structural uncertainties beyond our analysis. 

India is a growing player in global climate change mitigation. Whilst there is strong alignment 

between median estimates from our analysis and previous projections (Thambi et al. 2018; 

Das et al. 2023), our findings show how plausible variability in techno-economic parameters 

can lead to substantial uncertainty in those estimates. Our results confirm that the large 

uptake of solar and other renewables is already displacing coal at an accelerating pace 

(Joshi et al. 2025; Das et al. 2023). The pace of the transition remains uncertain, and 

conventional methods struggle to assess the likelihood of meeting defined levels. Our 

approach makes these uncertainties more transparent and enables clearer evaluation of 

how different policies perform against policy goals.  

Our median results suggest a larger renewables share of the energy system by 2030 than 

previous studies, but this is subject to high uncertainty that is not analysed (Laha and 

Chakraborty 2021; Fern Lobo et al. 2023). Previous scenario modelling performed for India 



 

 
 

often produces widely differing results without detailing assumptions (Spencer and Dubash 

2022). Our results show explicitly how this is possible as well as how policy design can 

incorporate this uncertainty.  

We show that subsidy-phasedown packages show significant robustness to many 

uncertainties, but slow lead times still jeopardise policy targets. This aligns with previous 

research citing the expansion of supporting infrastructure as a key obstacle (Debanjan and 

Karuna 2022; Vijayalaxmi and Manthanwar 2024). The expansion of solar PV is now resilient 

to some uncertainties but if this is not accompanied with policies supporting other 

renewables, storage or flexibility mechanisms than this could slow uptake and endanger grid 

stability (Debanjan and Karuna 2022). Efforts focused on the justice implications of phase-

outs should also be considered (Pandey and Kumar 2025; Vishwanathan et al., n.d.). In 

contrast to previous work, we do not find that carbon pricing has a substantial impact 

(Benitez et al. 2023).  

Our analysis has the limitation of addressing parametric uncertainty only, and thus it reflects 

the structural uncertainties of the model (Pastor et al. 2020). For example, FTT:Power 

depends on generalised LCOE comparisons of technologies, however this concept has been 

criticized for misrepresenting what investors are interested in and that profit should be the 

priority (Christophers 2024). To make the methodology more robust, it could be applied to 

questions of structural uncertainty across models. The use of models implies particular 

interpretations of policy problems, and other valid interpretations could be overlooked and a 

comprehensive treatment of uncertainty would consider this (McLaren and Markusson 2020; 

Stirling 2023; Brugnach and Ingram 2012). Nevertheless, we argue that our methodology 

provides a more extensive treatment of uncertainty than is seen in much modelling research 

and it could be applied to structural uncertainty in future work.   

We have shown that taking uncertainty seriously has important implications for modelling 

results. Equally plausible contexts or assumptions lead to dramatically different results. 

When considering policy targets this becomes especially important. Given that, we highlight 

new priorities for policy, particularly that of reducing lead times for renewable generation 

technologies as well as the importance of phase-outs at both the global and Indian national 

level.  Our approach offers a novel way of analysing uncertainty for climate policy and 

evaluating the policy robustness to those uncertainties.  
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