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Abstract

Climate policy modelling is a key tool for assessing mitigation strategies in complex systems
and uncertainty is inherent and unavoidable. We present a general methodology for
extensive uncertainty analysis in climate policy modelling. We show how emulators can
identify key uncertainties in modelling frameworks and enable policy analysis previously
restricted by computational cost. We apply this methodology to FTT:Power to explore
uncertainties in the electricity system transition both globally and in India and to assess how
robust mitigation strategies are to a vast range of policy and techno-economic scenarios. We
find that uncertainties in transition outcomes are significantly larger than previously shown,
but strong policy can narrow these ranges. Globally, plant construction and grid connection
lead times dominate transition uncertainty, outweighing regional price policies, including
policy reversals in the US. Solar PV proves most resilient due to low costs, though still
sensitive to financing and infrastructure limits. Wind and other renewables are more
vulnerable. In India, we find that policy packages including even partial phaseout instruments
have greater robustness to key uncertainties although longer lead times still hinder policy
goals. Our results highlight that reducing lead times and phasing out fossil fuels are critical
for faster, more robust power sector transitions.

1. Introduction

The purpose of policy design is to develop lasting solutions for shared problems (Giliberto
Capano and Woo 2018). Making such policies in a complicated and unpredictable
environment is challenging, and different forms of decision support are used to assess
available options. Analysts often use computational models of the system of interest which
show how policy options function within the model and provide insight into their likely effects
in reality (Kwakkel et al. 2010; Walker et al. 2003). However, as the relationship between
models and reality is not fully known, uncertainty is inevitable, limiting the ability to predict
policy performance. Some policies may work well in default model settings but lose their
effectiveness under other plausible conditions. In complex policy environments, such as
climate or energy policy, uncertainty is pervasive and there is need for more in-depth
analysis that goes beyond assessing effectiveness under a narrow set of circumstances.

Designing policy that remains effective under uncertainty—so-called robust policy—has
emerged as a key goal in policy studies (Dewulf and Biesbroek 2018). (Giliberto Capano and
Woo 2018) define policy robustness as a property of policies that allows them to ‘respond to,
and retain functionality amid, uncertainty’. Howlett et al. (2018) expand on their definition by
adding that robustness allows policies to ‘continue to deliver, over time, their intended
functions, purposes and objectives’ across probable or possible contexts. Robustness differs
from resilience which emphasises ‘returning to a stable equilibrium point after a shock’
(Capano & Woo 2018; 2017) rather than the ability to attain goals under shocks and



uncertainty. A distinction is also made between robustness of policy ‘output’ and ‘process’.
Output refers to the policies themselves and policy process refers to the wider policy
formulation and implementation cycle such as institutional decision-making frameworks. For
example, decision-making under deep uncertainty (DMDU) provides systematic frameworks
which seek to guide policymaking across both dimensions (Marchau et al. 2019). Policy
processes often include structural and institutional features that, whilst crucial, are typically
beyond the remit of policy analysts (Kwakkel et al. 2010). This paper focuses on the ‘output’
aspect of policy robustness from a modelling perspective.

Robustness has long been recognized as a vital attribute in policy design across multiple
fields (Dadson et al. 2017; Van der Steen and van Twist 2018) and studies have examined
the qualitative characteristics of robust policies (Wilson and Kirman 2016; Kwakkel et al.
2016). However, these are rarely complemented by computational modelling tools.
Uncertainty analysis often features in climate policy modelling but the application of such
analysis for designing robust policies is rare. Several authors have called for better treatment
of uncertainty in the field (Workman et al. 2021; Hepburn et al. 2025; Panos et al. 2023) as
uncertainty analysis to date has consisted of a few well-established methodologies (Pastor
et al. 2020). However, few studies attempt to use it to identify which policies are robust to
uncertainty (Rezai and van der Ploeg 2017; Cai and Sanstad 2016). Several qualitative
frameworks have been developed that categorise uncertainty (Kwakkel et al. 2010; Stirling
2010). From a modelling perspective, these uncertainties have been broadly categorised into
‘parametric’ and ‘structural’ uncertainty (Pastor et al. 2020). Existing methods typically
capture these uncertainties to estimate ranges of outcomes under broad assumptions about
policy ambition (lyer et al. 2015).

Parametric uncertainty concerns the values of a model’s parameters and how closely they
reflect aspects of reality. This can be analysed readily and receives most attention, primarily
through scenario or sensitivity analysis (Pastor et al. 2020). Scenario analysis simulates
different futures based on alternative assumptions (Brugnach et al. 2008), but it often
requires assigning specific values to parameters and perhaps their standard deviation, which
themselves may be uncertain. Sensitivity analysis (SA) supplements scenario methods by
estimating the influence of parameter uncertainty on model outputs, identifying which inputs
drive the most variation and defining uncertainty bounds (IEA 2024). However, it remains
subject to the computational cost of the model in question, which limits the application of the
method. Structural uncertainty refers to the discrepancy between a model and the system or
process it is used to investigate. Inter-model comparisons and ensembles are common
techniques for analysing structural uncertainty but remain relatively rare (Simmonds et al.
2022; Pastor et al. 2020; Jaxa-Rozen and Trutnevyte 2021).

Scenario and sensitivity analysis are common in climate policy modelling at the global and
regional level. For example, the International Energy Agency (IEA) models several global
scenarios of ambition in decarbonisation of the energy sector. In their modelling they find
that rapid renewables deployment could put pressure on supporting activity such as
permitting or supply chain resilience as well as inducing further cost declines as has already
been seen in key technologies (Luderer et al. 2022). They project that emissions will fall
nearly 30% by 2035 and approximately 50% by 2050 in their 2024 analysis on stated
policies (STEPS, IEA 2024). They find uncertainty in electricity demand is driven by
transitions in other industries, unpredictable weather patterns, and the rapid growth of new
sectors such as Al data centres. In the accompanying SA, they explore the impact of
variation in certain key factors, such as EV sales, on electricity demand, fuel use and
subsequent CO, emissions. This analysis suggests 2030 emissions could be 1.6% higher or



lower than projected due to key uncertainties. More ambitious scenarios are also projected
with varying assumptions about renewables deployment, coal phaseouts, energy storage
support and demand flexibility.

These types of analyses are also applied to regional transitions also. India is the third
largest absolute energy consumer and faces rapidly rising energy demand with
electrification in multiple sectors, a growing population, and limited domestic gas reserves
(Vijayalaxmi and Manthanwar 2024; Bhatia 2023). Policy instruments have included feed-in
tariffs, renewable purchase obligations, tradable renewable energy certificates or
transmission cost waivers (Sawhney 2021; Vijayalaxmi and Manthanwar 2024). Scenario
projections show solar will continue to expand rapidly and may come to dominate the
system (Singh and Idrisi 2020). The Central Electricity Authority (CEA) in India projects
between 53-55% renewables energy share (of capacity) by 2030 depending on demand
levels, hydropower availability and the cost of batteries (CEA 2023). Previous studies
examined key uncertainties affecting renewables uptake such as electricity demand and
technology costs (Chaturvedi et al. 2021; Dasgupta and Sarangi 2021). Many studies
highlight the need for supporting infrastructure such as transmission upgrades and storage
(Singh and Idrisi 2020) and reducing the costs of finance (Shrimali et al. 2013). Critics have
argued that modelling performed for India provide widely varying projections, without being
explicit about assumptions (Bhatia 2023).

The field of Uncertainty Quantification (UQ) is one avenue for addressing the need for
understanding model uncertainties and limitations. UQ replaces complex models with
‘emulators’ that approximate the true model (O’Hagan 2006), whilst being much more
computationally efficient, enabling flexible and robust uncertainty analysis otherwise limited
by computational cost (Lee et al. 2011). UQ has been framed as the connection from the
mathematical and statistical analysis of complex models to the real world, using a suite of
methodologies across fields (Swallow et al. 2022). Emulators are currently not widely used in
climate or energy policy modelling. For example, the modelling framework used in this paper,
FTT, has adopted uncertainty analysis based around model runs, whether by varying the
inputs systematically (SA, Lam et al. 2018) or randomly (Monte Carlo, Nijsse et al. 2023).
For policymakers to construct climate policy robust to uncertainties concerning assumptions
and model parameters, a first step is developing tools that emphasise this conditional
uncertainty within modelling frameworks (Stirling 2010).

This study develops a general methodology, based on uncertainty quantification (UQ), to
identify key uncertainties in climate policy and to assess the robustness of policy outcomes.
We provide a thorough analysis of model uncertainties at the global and regional level and
use this to explore what policy packages show more robustness to key uncertainties for
achieving certain policy goals. In section 2, we describe our method and its application to the
power system transition model, FTT:Power. We use this framework to analyse key
uncertainties in the global electricity system transition and analyse policy robustness for
India, with results presented in section 3. In section 4 we discuss our findings in relation to
similar research, highlight our contribution and conclude.

2. Methodology

We explore uncertainties affecting the power system transition globally and regionally, and
investigate how different policy packages in India perform across a broad range of
scenarios. By constructing emulators for different outputs of the model, we explore future



scenarios, their uncertainty and the performance of policy packages under thousands of
plausible techno-economic and political contexts by varying the values of the relevant
unknown or uncertain parameters. This allows us to assess policy robustness to these
uncertainties, without requiring infeasible amounts of simulations of the model itself. Our
study applies this general methodology to FTT:Power, but it could be applied to a broader set
of models and questions.

2.1 FTT:Power

The model family known as Future Technological Transformations (FTT) uses dynamic
simulation modelling to understand how technology mixes in various sectors are set to
develop in the coming decades (Mercure 2012). FTT:Power is a 71-region model of power
sector investors and dispatchers and features 22 electricity generation and storage
technologies. Residual load-duration curves are used to model load bands and storage
needs; dispatchers decide on which generation asset to use by comparing marginal costs.
The model is based on evolutionary dynamics simulating the uptake of technologies in S-
curve processes characteristic of innovation. The central aspect is a set of replicator
dynamics equations (Lotka-Volterra equations) which model the diffusion of technologies
based on comparisons of levelized costs in chains of binary discrete choice models. The
model incorporates a wide array of policy instruments, including regulations, taxes and
subsidies. Innovation is incorporated by adding technology-specific cost reductions
proportionate to cumulative global capacity. A term is added to costs to capture non-financial
factors through calibration to historical shares data. This implicitly accounts for non-captured
policies.

2.2 Emulation

The analysis uses emulators that are trained on input and output data from FTT:Power
model runs at varied inputs. Whilst it is possible to emulate the entirety of FTT:Power, this
would be computationally intensive due to the large numbers of potential model inputs and
outputs. We focus on inputs and outputs relevant to the current study, but these could easily
be substituted for alternatives within the emulation framework for studying different
questions. Focusing on specific parts of models is common for all such methods.

2.2.1 Simulator configuration

We conduct a series of model simulations, systematically varying key policy and techno-
economic parameters known to significantly influence four energy transition outputs:

1. Electricity generation capacity (onshore wind, solar PV)
2. Power sector emissions

3. Shares of renewables in the electricity mix (by capacity)
4. Weighted costs of electricity generation

Techno-economic inputs determine key aspects of the energy system and the context within
which policies function. Table 1 shows some of those varied here, their assumed ranges and
whether these vary generally, regionally or by technology. The specification of all 15 techno-
economic inputs can be found in the Supplementary Information (Sl). We use simplifying
parameters that apply to multiple FTT:Power inputs. These can apply uniformly across all
regions, like learning rates for technologies, or modify sets of pre-existing values. For
example, discount rates have a baseline value for each region-technology combination, and
our single discount rate parameter acts on all these, assuming they vary in a correlated
fashion. This is a simplifying assumption we choose here for flexibility and tractability.



Input Technologies / Ranges Description/Sources
Regions
Learning Exponent Solar PV (-0.473) - (-0.165) Key parameter for the

Mean -0.319

Onshore wind
Offshore wind

(-0.3) — (-0.088)

learning rate (% price
decline per doubling of
capacity)

(Way et al. 2022)

Lifetimes Solar PV (Way et al. 2022; Krey et
25-35 (years) al. 2019)
Onshore wind
Offshore wind
Lead times Solar PV 0.5-1.5 (years) Lead times splitinto
Onshore wind 1-2 (years) technolog_y sp_ecific and
Offshore wind 2-4 (years) system-wnde_ timescales.
Ranges devised from
Grid connection / 0-1 (years) Gumber et al. (2024)
commissioning
Discount Rate Region x Technology +/- 3% (2% minimum) IRENA, BNEF
Electricity Demand Regional +/- 20% to growth rate E3ME results based on
of projected demand IEA projections
Fuel Prices Coal +/- 2 standard deviations Average over last 5 years
Gas (CCGT) from regional mean (IEA)

Table 1. Techno-economic input details. Each input is listed with the technology/region it applies to
within FTT:Power. Ranges provided as well as their sources.

The learning exponent determines the rate at which costs decline with deployment. Learning
rates for similar technologies, e.g. onshore and offshore wind, are varied together. Bringing a
generation plant online involves multiple stages (Gumber et al. 2024). We define lead times
as the period from construction start to electricity generation. This combines technology- and
system-level timescales, including grid connection delays. The discount rate is the rate at
which investors discount future costs and revenues, reflecting the opportunity cost of capital
and investor preferences for risk (Nasr et al. 2025). It relates to interest rates: cheaper
finance means lower discount rates, making long-term and riskier projects more viable.

There are many ways policies could be parametrised in the model, with values specified by
year, country, instrument, and industry. To simplify and avoid the simulation of unrealistic
scenarios, we group by region and sets of policies determined likely to be correlated, such
as upfront subsidies and feed-in tariffs. For each region-instrument combination, we define a
single policy parameter that varies on [0,1] and maps onto these groupings. Through
combining these policy ambition levels in different ways, certain types of instruments can be
switched off entirely or simulated at any rate up to their regional maximum, allowing flexibility
in the composition of policy packages simulated.

Table 2 details the three groupings of policy instruments,_applied to technologies according
to what is most common, depending on aspects such as the maturity of the technology.
Phase-outs are applied to fossil fuel-based technologies such as coal, gas and oil. Subsidies
are applied to nuclear, biomass, pumped hydro, geothermal and carbon capture and storage
(CCS) technologies, and are correlated with feed-in tariffs applied to solar PV, onshore and
offshore wind. Feed-in tariffs are differentiated based on the relative costs of these
technologies, with wind technologies receiving a larger tariff. Carbon pricing is applied to all
emitting technologies.

For regional groupings, China, the United States (US) and India are treated individually while
the rest of the world is categorised into Global South or Global North based on World Bank
classifications, giving 15 policy parameters (5 regions, 3 policy groupings) controlling levels
of policy ambition. For example, the phase-out parameter for China can vary from no phase-
out (0) to total phase-out (1), with mid-level phase-out (0.5) resulting in half the capacity



additions that would occur under no phase-out. One exception is the feed-in tariff for the US
which can also capture rollbacks of policy supporting renewables. For the US, parameter
values between 0.5-1 represent the instrument levels in Table 2, values between 0.5-0
represent baseline policy for all instruments except feed-in tariffs which become negative.
This is designed to capture removal of tax credits under the Inflation Reduction Act (IRA).
Whilst the policy instrument is not identical, it has a similar effect in making renewables less
attractive.

Overall, our analysis features 30 variable parameters, split between 15 techno-economic
and 15 policy inputs. To produce training data for emulation, 500 runs of FTT:Power are
performed at input sets generated by Latin Hypercube Sampling, ensuring comprehensive
exploration of the 30-dimensional parameter space (Urban and Fricker 2010). Additional
runs can be performed if regions of parameter space are predicted poorly, with validation
checks to assess this. Once trained and validated, predictions from the emulator can be
made at any combination of inputs.

Instrument Baseline policy Mid-level policy High-level policy
Parameter value 0 0.5 1
(excl. US)
Phase-outs
(sales restricted)
Oil, CCGT, Coal 0% 50% 100%
Feed-in tariffs
Onshore/Offshore $0/MWh $20/MWh $40/MWh
Solar PV $0/MWh $15/MWh $30/MWh
Subsidies
(upfront cost
reduction) 0% 10% 20%
Nuclear 0% 25% 50%
CCS (coal, gas, 0% 30% 60%
waste) 0% 25% 50%
Biomass (+ CCS) 0% 25% 50%
Geothermal
Pumped Hydro
Carbon Pricing Current regional levels $31/tonCO2 (2022) — | $62/tonCO2 (2022) —
Oil, CCGT, Coal $345/tonCOz2 (2050) $564/tonCO2 (2050)

Table 2. Policy instrument levels. Each row signifies what instruments are assumed to be
correlated and are varied with the same parameter. Three levels are shown, but parameter values can
vary between 0 and 1.

The more ambitious policy levels are additional to the baseline which implicitly captures
current policy for feed-in tariffs, subsidies and phase-outs. The carbon price is the actual
level of the policy, if regions have previously existing carbon pricing, such as in the EU, this
is replaced with the new level rather than added to it.

2.2.2 Emulator Fitting

Given the model runs generated by the space-filling design above, we train a Gaussian
Process (GP) emulator for each output of interest. A GP is a flexible statistical model that
can be used to approximate the true, expensive model, producing efficient predictions of the
output at any set of inputs. Importantly, a GP provides uncertainty on these predictions, with
interpolation at known points and uncertainty increasing as prediction points move further
away (in input space) from observed simulations.



Denoting by f(x) a particular output given when FTT:Power is simulated at vector of inputs x
in parameter space, the GP emulator has the general form:

f(x) ~ GP(m(x),C(x, x")

with mean function, m(x), and covariance function, C(x,x"). The mean function can be used
to capture the main trend of the relationship between the inputs and output, for example
through a regression on the inputs. The covariance function models correlations in the
residuals, with parameters controlling the correlation in each input and the overall variance
(Oakley and O’Hagan 2002). Given parameter estimates and data, the predictive mean and
variance of f(x) at any unseen inputs x can be written down using properties of the
multivariate Normal distribution, and hence predictions are fast.

Emulators were trained for capacity of onshore wind and solar PV, and power sector
emissions, at the global level for 2030, 2040 and 2050. For India, emulators were built for
these outputs as well as the weighted average cost of electricity generation and shares of
the energy mix made up by renewables, for the same years. For each, we use 80% of the
500 simulations for training and 20% for testing. Performance is validated using the test data
and leave-one-out prediction (Dunne et al. 2022) (see Sl). The emulation framework can be
extended to higher dimensional output, for example the full time series of the above outputs,
by combining GPs with dimension reduction techniques (Higdon et al. 2008; Salter et al.
2019).

2.3 Sensitivity analysis

Using the above emulators, we perform ‘one-at-a-time’ (OAAT) sensitivity analysis (SA) to
evaluate the inputs that are the main drivers of variability in the model outputs (McNeall et al.
2024). Each input in turn is varied across its entire range whilst the remaining parameters
are kept constant. For the non-varied parameters, policy inputs are held at baseline levels
(O, representing current policy), and techno-economic parameters at their mean. The relative
sensitivity across all outputs is calculated and inputs ranked according to how much variation
they drive. The results identify the most important drivers of variability and guide the rest of
the analyses.

2.4 Uncertainty Analysis

We can assess a range of policy scenarios rapidly by evaluating the emulators at different
sets of inputs. By fixing certain inputs at chosen values, within subranges, or according to
some probability distribution, we can sample from the input uncertainty under different
scenarios and use the emulators to propagate this uncertainty through the model to give a
probabilistic assessment of the output. By placing different assumptions on inputs, the
emulators allow for the efficient and rigorous comparison and assessment of the robustness
of policy scenarios under uncertainty.

The following describes the specific scenario comparisons. For each scenario, 20,000
samples are drawn from the distributions over the unfixed inputs, with the emulator mean
and variance evaluated for the relevant outputs and sampled from to account for emulator
uncertainty. Policy parameters are set at certain levels for each of the analyses. For these
policy scenarios, the most important techno-economic parameters, for each analysis, are
sampled uniformly from specific subranges whilst the remaining inputs are varied normally,
therefore we can explore uncertainty across and within scenarios. Lead times are varied by
dividing the full range into sub-ranges and then varying uniformly within each, with either 3
(fast, medium, slow) or 2 (fast, low) sub-ranges that partition the original range.



We investigate the global power sector emissions in 2030 and 2050 under several scenarios
featuring different levels of global ambition under different assumptions about lead times.
The policy scenarios feature one at current policy levels, and two with unified global
response at mid and high levels as detailed in Table 2. These more ambitious policy levels
are additional to current policy for feed-in tariffs, subsidies and phase-outs and the carbon
price is the actual level of the policy. If regions have previously existing carbon pricing, such
as in the EU, this is replaced with the new level rather than added to it.

For India’s power sector, we first analyse how different policies perform at achieving capacity
levels for 2030. A series of policy packages are designed for India’s national power system
that feature combinations of instruments at different levels. We predict capacity levels of
onshore wind and solar PV at each combination of three levels of each instrument, shown in
Table 2, and analyse what proportion exceed 393 GW, the combined capacity projected by
the CEA (2023).

Next, we analyse the interaction between lead times, electricity demand and phase-out
instruments over time. We compare a mid-level phase-out to current policy. For electricity
demand, a scenario is classed as having ‘low demand’ if the growth rate is 0-20% lower than
the mean level or ‘high demand’ if it is 0-20% higher year-on-year.

The final analysis examines a wider range of policies and their robustness in achieving
multiple policy objectives under uncertainty. Objectives are represented by chosen target
levels for outputs for 2030: 1) the CEA projection of 55% renewables share of generation,
not including nuclear and large hydropower, 2) the weighted average cost of electricity
generation equal to or below $68/GJ, the value under current policy derived from the
FTT:Power baseline scenario, 3) power sector emissions below 1000 MtCO,/year,
representing a reduction of approximately 30% from 2024 levels (Ember 2025). The policies
include combinations of all instruments at mid-level (Table 2). We examine the robustness to
inputs that are most important across all outputs by comparing the proportion of predictions
that achieve the targets under each policy package subject to variation in the techno-
economic parameters.

3 Results

We present our results in two parts. Firstly, we explore the key relationships in the model at
the global and national level through sensitivity analyses, highlighting the main inputs driving
variation, and uncertainty, for energy transition outputs. Secondly, we explore sets of
scenarios to compare policy impact and robustness to key uncertainties.

3.1 Sensitivity Analyses

At the global level, we focus on the outputs of cumulative capacity of key technologies, solar
PV and onshore wind, and power sector emissions. The SA presented in Figure 1 shows the
relative importance of inputs in 2030, 2040 and 2050.

Variation in system-wide grid connection times has the most impact across outputs,
particularly for emissions and solar PV capacity in the near term. This is also the case for
variation in solar construction times. For onshore wind, whilst construction periods have the
most impact on capacity it does not drive much variation in emissions except in 2030. This
suggests that onshore additions are not primarily replacing fossil fuels except in the near
term. Onshore is less affected by variability in grid connection times than solar as
construction times are longer and investment costs are larger, so the impact of faster grid



connection has a smaller impact on investor appraisal. In the longer term the learning rate
for onshore wind drives most of the variation in capacity as costs decline. This highlights that
onshore additions are often at the expense of other renewables, most likely solar. The
learning rate of solar has a much smaller relative impact on solar capacity levels. This
indicates that costs are already so low that further declines brought about by learning-by-
doing only have a marginal impact. Discount rates play a substantial role in the rollout of

both technologies in 2040 and 2050, while electricity demand drives substantial variation in
all outputs.

Regarding policy inputs, phase-outs have a substantial impact on the level of emissions. In
China, phase-outs have a larger impact in the near term as they determine how quickly
China reduces its reliance on coal, while longer term, the level of phase-outs in the Global
South drives more emissions variation as electricity demand continues to grow. Phase-outs
in both regions also propel some variability in onshore capacity. Chinese subsidies drive
much variation in onshore expansion particularly in the longer term. US subsidies or
rollbacks drive variation particularly in the near term but relatively low amounts. Solar
capacity seems not to vary heavily in response to phase-outs, subsidies or carbon pricing
but is affected by factors that can be influenced by other policy not modelled here. For
example, grid expansion support or monetary policy would influence lead times and discount
rates, which here induce much of the variation.
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Figure 1. OAAT sensitivity analysis for global outputs across time. Panel a) shows the relative
sensitivity of outputs (x-axis) to policy and techno-economic inputs (y-axis), policy parameters below
0.001 effect excluded. Panel b) shows the average sensitivities across all outputs shown ordered by
importance. Abbreviations: China (CN), Rest of Global South (RGS), Solar PV Capacity (Solar),
Onshore Wind Capacity (Onshore). Figure generated using code adapted from McNeall et al. (2024).
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Figure 2. OAAT sensitivity analysis for India outputs across time. Same as Figure 1 for Indian
outputs. Electricity price refers to weighted average generation price, Renew. Share refers to share of
total capacity provided by renewables excluding nuclear and large hydropower.

Figure 2 shows the SA for India. Grid connection and solar lead times drive most variation
across outputs, in particular emissions, solar capacity and renewables share, although
onshore capacity is less sensitive to grid connection times. Emissions and capacity levels for
both technologies are also sensitive to variation in electricity demand. Demand has less
influence on the cost of electricity generation and renewables share, implying that greater
demand alone is met proportionately by both renewables and fossil fuel-based technologies.

Phase-outs have a strong impact on emissions and near-term onshore capacity and a
relatively minor impact on solar capacity, renewables share and the price of electricity
generation. The influence on generation costs increases over time and this is also the case
for subsidies, but they are most highly affected by carbon taxation. Carbon taxation has a
low effect on emissions. Whilst carbon taxes will increase the costs of coal-based
generation, India’s main source of electricity currently, the discount rate for coal is high so
much of this cost is discounted away over time. There is also low availability of other less



intensive fossil-based technologies, such as gas, so the tax encourages mostly a shift
towards renewables but not as effectively as subsidies which are not discounted. Subsidies
drive substantial variation in onshore capacity but not solar.

The results of the above SA provide insight into what inputs drive most variation, and
therefore uncertainty, in outputs of interest. This informs which inputs feature more
prominently in subsequent analyses. For example, as capacity levels in India are mostly
sensitive to phase-outs and subsidies, this is what features in the below instrument
comparison.

3.2 Uncertainty Analyses

3.2.1 Global Power Sector Emissions Over Time

Figure 3 shows how the lead times and different levels of global policy ambition interact to
influence the level of emissions in 2030 and 2050, under uncertainty in all other techno-
economic inputs. Increased policy ambition leads to lower median emissions in all scenarios
as well as greater predictability, displayed by the range and shape of the distributions.
Scenarios featuring slow leads have greater emissions but are more predictable in the near
term. When leads are fast, we see much greater emissions reductions, even under current
policy, resulting in an approximate halving of 2050 emissions levels compared to slow rollout
scenarios. High global ambition results in even greater reductions and far more predictable
2050 emissions levels. Comparing the impact of lead times to the impact of global policy, we
see that fast leads under current policy have an approximately equivalent impact to mid-level
policy under slow rollouts.
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Figure 3. Power sector emissions distributions under different policy-techno-economic
scenarios. Distributions represent the variation due to the uncertain techno-economic inputs within
that scenario. Dotted lines are median levels.

Under fast lead scenarios we see skewed distributions for 2030 emissions levels with a
portion of scenarios achieving disproportionately high emissions reductions. These
scenarios feature the very fastest speeds where they interact with particularly favourable
conditions such as high coal prices and low discount rates which increase investor
preferences towards renewables.

3.2.2 India Policy Instrument Comparison for Capacity

Figure 4 shows the uptake of solar PV and onshore wind under different policy instrument
combinations in India in 2030. We focus on phase-outs and subsidies only, as carbon pricing
was shown by the SA to have little effect on capacity levels in India. We observe that fossil
fuel phase-outs significantly drive uptake of solar PV and marginally increase onshore
capacity. Subsidies drive greater onshore capacity but have a less pronounced effect on
total capacity as in some scenarios, greater subsidies lead to less solar uptake. Under our
baseline scenario, bottom left panel of Figure 4, the median combined uptake reaches



approximately 390 GW, almost equal to that projected by the CEA (2023), implying a good
alignment with government projections for capacity levels. However, we show the large
uncertainty associated with these figures and only in 50% of our predictions is that value
reached or exceeded in the baseline scenario.
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Figure 4: Distributions for Indian renewable energy capacities in 2030 across national policy
packages. Panels represent different policy instrument combinations. Each distribution represents
the capacity of onshore, solar PV and their total under variation in techno-economic inputs. The total
has 90% ranges marked by dotted lines with black solid lines representing the median total capacity.
Red sections represent predictions above 393 GW.

A high phase-out achieves a 28% increase in median total capacity. Beyond median levels,
the number of scenarios where the 393 GW level is exceeded increases substantially as the
phase-out strength rises with high phase-outs exceeding this level in just under 95% of
scenarios. The skew of the total capacity distributions inherits the skew of solar capacities
which is far stronger than that for onshore wind due, primarily, to the impact of lead times.
We can infer that scenarios featuring faster leads will result in capacity levels toward the
upper portions of the distributions.

When subsidies alone are added to current policy, the median combined capacity level
increases marginally. The increase is stronger when focusing solely on uptake of onshore
wind, but this is accompanied by a reduction in uptake of solar resulting in a less substantial
increase in total capacity. Under our assumptions, which feature larger subsidies for onshore



than solar, greater subsidies result in some additions of onshore wind replacing additions of
solar PV as opposed to fossil fuels. When subsidies are used in conjunction with phase-outs,
this swapping between onshore and solar is mitigated at certain subsidy levels.

These results show not only the impact of policy but also the variability of any policy scenario
when subjected to a comprehensive treatment of plausible variability, and therefore
uncertainty, in the techno-economic context. This has substantial implications from a
planning perspective and in the next subsection we perform more systematic exploration of
these uncertainties for emissions.

3.2.2 Phase-out Robustness for Emissions Reduction

Figure 5 shows Indian power sector CO, emissions as a function of phaseout levels, lead
times, electricity demand and year. Informed by the SA, we focus on phase-outs as the
most important instrument for achieving emissions reduction. We compare between our
baseline scenario and a mid-level phase-out only as partial phase-outs appear more
politically feasible in the near term. We see that even partial phase-outs significantly reduce
median emissions and the sensitivity of emission levels to electricity demand levels. Without
any phase-out policy, emission levels are more influenced by demand and this sensitivity
increases substantially over time. In 2050 under current policy, emissions levels could be
anywhere between 0-1800 MtCO/year . With a partial phase-out this range is restricted to 0-
1000 MtCO./year, a reduction of 45%.
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Figure 5: Distributions of Indian power sector emissions under policy and electricity demand
variation across time. Rows represent different levels of phase-outs, columns represent different
lead times. The coloured curves represent different years; the shades represent levels of electricity
demand. Dotted coloured lines represent the median for all demand levels for that year-leads-policy
scenario.

The sensitivity of emissions to demand increases over time, but less so with a partial
phaseout. The wider ‘tails’ seen in the distributions under no additional policy are
substantially decreased under a partial phaseout scenario. Without additional policy, India’s
power sector emissions could rise substantially by 2050 in scenarios with high demand and
slow lead speeds. If construction and connection proceeds quickly then, even under current
policies, emissions look set to decrease by 2050. However, if electricity demand is high then
there is significantly greater uncertainty. This is shown in the significant difference between
the spread of the distributions for 2050 in a fast lead, high electricity demand scenarios. In
scenarios with slow leads, high electricity demand results in higher levels of emissions than
under fast lead times. The uncertainty driven by electricity demand and its interaction with
leads is significantly less under phase-outs, as are median emissions levels.

3.2.3 Policy Robustness Over Multiple Policy Goals




Our results from the two analyses above show phase-outs having substantial impact on the
transition in India for individual policy goals. In this section we examine a broader set of
policies and goals for India in 2030. Figure 6 displays the proportions of emulator predictions
under techno-economic variability that achieve target levels for each policy goal, and the
trade-offs. We observe lead times are the uncertainty that all policy packages have the least
robustness to, as indicated by the large differences between the panels when compared
vertically. However, some policies are robust to other uncertainties for certain targets,
observed when comparing horizontally.
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Figure 6. Proportions of predictions meeting 2030 targets in India. Panels represent different
combinations of ranges of techno-economic parameters. Lead times, discount rates and demand are
varied uniformly within their subranges, identified by the panel, and all other techno-economic
parameters are varied normally. Bars represent the proportion of predictions that achieve targets.
Bars are separated into different policy packages: baseline, subsidies-carbon price (Sub-CP), carbon
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outs (Sub-Phase).

In scenarios where plant integration moves at pace, all policies analysed are robust in
achieving goals on emissions and renewable energy share. However, the average levelized



price of electricity generation is more sensitive to other uncertainties, particularly discount
rates. The policy that is most likely to achieve the cost target are subsidies-phase-outs. With
fast leads, current policy also achieves many of the targets under low discount rates but not
high ones, particularly if they are accompanied by high electricity demand. This is also the
case for other policies except subsidy-phase-outs which remain relatively robust.

Under medium lead times, policy packages that do not include a phase-out instrument
reached the emission target far less often. Packages including a phase-out, however, remain
relatively robust although higher demand results in a smaller proportion achieving the
thresholds. Phase-out-based packages show greater robustness in achieving the renewable
energy share target and this is less affected by variability in demand. Carbon pricing-based
packages result in higher costs of electricity generation and most predictions have
generation costs above baseline levels. Subsidy-phase-outs result in costs staying below
target levels in most predictions but this becomes much less likely in scenarios featuring
high discount rates and medium or slow lead times. Under slow leads, most policies fail to
achieve any goals in most scenarios but if discount rates are low then subsidy-phase-outs
result in around 75% of predictions achieving the cost of generation target, greater than
current policy. We can infer that even in unfavourable techno-economic contexts this policy
would still result in cheaper electricity production as well as a greener power system.

Lead times are clearly the most impactful variable, and all policies have limited robustness to
this. Phase-out based instruments exhibit strong robustness to discount rate and electricity
demand uncertainty for energy share and emissions goals. When coupled with a subsidy this
makes the package more robust to all uncertainties, including lead times, in achieving the
generation cost target. These results show that the robustness of policy would be increased
significantly if accompanied with policies aimed at decreasing lead times.

4. Discussion & Conclusion

Our methodology enables new treatments of uncertainty that are typically too
computationally costly to perform using simulations alone. Using emulators we replicate
established methods, incorporate in-depth uncertainty analysis and apply this to policy
design. We demonstrate a general methodology for uncertainty analysis in modelling
research and apply it to the power system transition model, FTT:Power, with a focus on
policy robustness. In this application, we adopt flexible assumptions about policies, regions
and general input parameterising to explore the energy transition globally and in India.

We find that variability in plant construction and grid connection speed, or lead times, drives
most uncertainty in the global transition, outweighing price policies by individual regions,
predominately due to the low cost of solar PV. For selected policy goals in India, partial fossil
fuel phaseouts coupled with subsidy support for renewables showed robustness against a
wide range of uncertainties. Generally, we infer that policy packages that focus on
decreasing lead times, alongside regulation constraining fossil fuel expansion results in
quicker, more predictable and more robust transitions in the power sector. However, this
predominately favours solar PV expansion and further support for other renewables is
necessary.

We show that future global capacity levels of key technologies and power sector emissions
are highly sensitive to lead times. Within FTT:Power, longer lead times delay revenue

creation, which limits the speed of reinvestment into the next generation of power plants. In
other words, the longer lead time impacts the maximum growth rate. Technologies with fast



lead times can most rapidly fill in market gaps compared to technologies with longer lead
times (Mercure 2015). Given the strong path dependency in the model, with growth
proportional to existing shares, this has long-term impacts (Mercure et al. 2014). In earlier
stages of the transition, lead times for renewables were relatively low. These have been
increasing over time for most renewables, but solar PV remains the quickest to commission
(Gumber et al. 2024). Coupled with our findings, this suggests that lead times are a new key
and growing driver of uncertainty in the global transition.

Regional energy policies, both supportive and adversarial, now drive relatively less
uncertainty at the global level for the expansion of solar PV. This supports previous work
highlighting the momentum of solar expansion (Nijsse et al. 2023) and this limits the impact
of regional rollbacks, for example, the US’s removal of aspects of the Inflation Reduction Act.
We show that this has a limited impact on the global transition and that solar PV is
particularly resilient due to recent cost declines and strong historical support. Onshore wind
is still impacted by market-leading regions like China, but the US impact is minor and only in
the near term. However, this does not include all policy levers and does not capture how the
US might exert political pressure on other countries (MacNeil and Paterson 2020), or the
US’s role in international financial institutions (Merling and Forster 2024; Helleiner 2025).
Further research is needed into policy affecting enabling factors to give insight into how
regional policy exerts influence and drives uncertainty.

By 2030, we see lower median emissions under current policy than IEA projections (2024),
though their projections fall within our uncertainty range. We include a broader set of
uncertainties, showing that both shorter lead times and fossil fuel phase-outs are critical. Our
results reveal much higher sensitivity than the IEA’s analysis, underscoring our contribution.
Our findings suggest policies focusing on decreasing lead times and enabling financing are
critical. Fast lead times is dependent on factors such as permitting regulations, resilient
supply chains, grid expansion and other accompanying infrastructure such as storage
capacity (IEA 2024). Our contribution highlights the scale of the potential acceleration if
progress is made in these areas.

To reduce the costs of capital, financial derisking tools such as contracts-for-difference and
green finance remain important to accelerating renewables (Beiter et al. 2024; Christophers
2024) especially for wind, given its higher upfront costs and longer lead times. Whilst we find
solar PV is increasingly resilient to financing constraints, it still currently depends on investor
confidence and predictable revenues. The influence of investor preferences has also
prompted calls for greater public ownership of energy systems (Christophers 2024),
underscoring the importance of structural uncertainties beyond our analysis.

India is a growing player in global climate change mitigation. Whilst there is strong alignment
between median estimates from our analysis and previous projections (Thambi et al. 2018;
Das et al. 2023), our findings show how plausible variability in techno-economic parameters
can lead to substantial uncertainty in those estimates. Our results confirm that the large
uptake of solar and other renewables is already displacing coal at an accelerating pace
(Joshi et al. 2025; Das et al. 2023). The pace of the transition remains uncertain, and
conventional methods struggle to assess the likelihood of meeting defined levels. Our
approach makes these uncertainties more transparent and enables clearer evaluation of
how different policies perform against policy goals.

Our median results suggest a larger renewables share of the energy system by 2030 than
previous studies, but this is subject to high uncertainty that is not analysed (Laha and
Chakraborty 2021; Fern Lobo et al. 2023). Previous scenario modelling performed for India



often produces widely differing results without detailing assumptions (Spencer and Dubash
2022). Our results show explicitly how this is possible as well as how policy design can
incorporate this uncertainty.

We show that subsidy-phasedown packages show significant robustness to many
uncertainties, but slow lead times still jeopardise policy targets. This aligns with previous
research citing the expansion of supporting infrastructure as a key obstacle (Debanjan and
Karuna 2022; Vijayalaxmi and Manthanwar 2024). The expansion of solar PV is now resilient
to some uncertainties but if this is not accompanied with policies supporting other
renewables, storage or flexibility mechanisms than this could slow uptake and endanger grid
stability (Debanjan and Karuna 2022). Efforts focused on the justice implications of phase-
outs should also be considered (Pandey and Kumar 2025; Vishwanathan et al., n.d.). In
contrast to previous work, we do not find that carbon pricing has a substantial impact
(Benitez et al. 2023).

Our analysis has the limitation of addressing parametric uncertainty only, and thus it reflects
the structural uncertainties of the model (Pastor et al. 2020). For example, FTT:Power
depends on generalised LCOE comparisons of technologies, however this concept has been
criticized for misrepresenting what investors are interested in and that profit should be the
priority (Christophers 2024). To make the methodology more robust, it could be applied to
questions of structural uncertainty across models. The use of models implies particular
interpretations of policy problems, and other valid interpretations could be overlooked and a
comprehensive treatment of uncertainty would consider this (McLaren and Markusson 2020;
Stirling 2023; Brugnach and Ingram 2012). Nevertheless, we argue that our methodology
provides a more extensive treatment of uncertainty than is seen in much modelling research
and it could be applied to structural uncertainty in future work.

We have shown that taking uncertainty seriously has important implications for modelling
results. Equally plausible contexts or assumptions lead to dramatically different results.
When considering policy targets this becomes especially important. Given that, we highlight
new priorities for policy, particularly that of reducing lead times for renewable generation
technologies as well as the importance of phase-outs at both the global and Indian national
level. Our approach offers a novel way of analysing uncertainty for climate policy and
evaluating the policy robustness to those uncertainties.
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